
solutions

March 1, 2016

1 Computing with units exercise notebook

1.1 Task 1

Import UnitRegistry from the pint package and import the numpy library as well. Then create an instance
of UnitRegistry as explained in the presentation (check the LiveCoding.ipynb notebook on the desktop).

In [3]: from pint import UnitRegistry

import numpy

ureg = UnitRegistry()

Define a physical quantity with the Pint commands explained in the presentation. Specifically, create a
variable that represents the mass m:

m = 11.4 Kg

In [4]: m = 11.4 * ureg.kilogram

Now define another physical quantity, the acceleration a:

a = 12.3
m

s2

In [5]: a = 12.3 * (ureg.meter / ureg.second ** 2)

Familiarize with the outputs you can get from these quantities and print to the screen fro both variables
a and m:

1. Print the quantity.
2. Print the magnitutde.
3. Print the unit(s).
4. Print the dimension.

In [6]: print(m)

print(m.magnitude)

print(m.units)

print(m.dimensionality)

print("\n")

print(a)

print(a.magnitude)

print(a.units)

print(a.dimensionality)

1

11.4 kilogram

11.4

kilogram

[mass]

12.3 meter / second ** 2

12.3

meter / second ** 2

[length] / [time] ** 2

Build a new variable F , force, from the 2 variables m and a employing the well known formula:

F = ma

In [7]: F = m * a

Then

1. Print the F variable.
2. Print its units.
3. Print its magnitude.
4. Print its dimension.

In [8]: print(F)

print(F.magnitude)

print(F.units)

print(F.dimensionality)

140.22 kilogram * meter / second ** 2

140.22

kilogram * meter / second ** 2

[length] * [mass] / [time] ** 2

Now try to convert F in newton (permanent conversion) with the Pint command explained in the
presentation. Print again F , does its magnitude changed? And its unit? Why?

In [9]: F.ito(ureg.newton) # Permanent conversion

print(F) # Doesn’t change as Kg*m / s^2 is the unit definition of Newton

140.22 newton

Try to print only (so employing on the fly conversion) F in Dyne. To check if your variable is yet
expressed in newton after you expressed in the new unit print both F in Dyne (on the fly conversion) and
F .

In [10]: print(F.to(ureg.dyne)) # On the fly conversion

print(F)

14022000.0 dyne

140.22 newton

Define 2 new (force quantities) variables G1 and G2 as follows:

G1 = 4.3 Dyne

G2 = −2.3 Kilogram− force

2

In [11]: G1 = 4.3 * ureg.dyne

G2 = -2.3 * ureg.kilogram_force

Now try to sum F , G1 and G2 in these 3 diffrent orders:

S1 = F +G1 +G2

S2 = G1 + F +G2

S3 = G2 +G1 + F

In [12]: S1 = F + G1 + G2

S2 = G1 + F + G2

S3 = G2 + G1 + F

print(S1)

print(S2)

print(S3)

117.664748 newton

11766474.8 dyne

11.9984651232 force kilogram

The last exercise highlighted the fact that with Pint you can sum variables with different units but same
dimensions together without converting them. However, you get 3 different results, in term of units, with
the 3 different sums. Can you get the logic behind these difference and how to obtain directly the sum in
the desired units?

To check if your guess is right, try to define these lengths:

l1 = 1 m

l2 = 2 cm

l3 = 6 mm

Sum these quantities in a way to get the result directly in centimeters.

In [13]: l1 = 1 * ureg.meter

l2 = 2 * ureg.centimeter

l3 = 6 * ureg.millimeter

The sum will be expressed in the unit of the first element

print(l2 + l1 + l3)

102.6 centimeter

1.2 Task 2

With Pint is possible to define custom units of measure and also interact with the numpy library.
Let’s pretend we want to produce some (really simple) statistical results regarding the alchol consumption

of a group of PhD students in UK. Unfortunately, all the data we managed to collect are expressed in shots,
a unit not implemented in Pint.

First, define a new unit shot equals to 30 milliliters as explained in the presentation with:

• Canonical name: shot
• Alias: sh
• Definition: shot = 30 ml

3

https://en.wikipedia.org/wiki/List_of_unusual_units_of_measurement#Shot

In [14]: ureg.define(’shot = 30 * milliliter = sh’)

We got the data from an anonymous group of PhD students about the alchol consumption (in shots) for
every day of the week:

[2, 3, 2, 5, 10, 12, 1] shot

Build a single object containing the shot quantities showed above, employing numpy.array command as
explained in the presentation.

Now try to:

1. Get the total number of shots consumed in that week employing numpy.sum command.
2. Get the week mean of the number of shots employing numpy.mean.
3. Convert (element wise) the quantities in liters with a for cycle. In this step you could use a list

approach or a numpy approach. In both cases be aware that quantities are objects. Then if you
decide to employ the numpy approach remeber that quantities cannot be stored in an array, in which
you should store the magnitudes only. On the contrary, you can store quantities directly as list

elements.
4. Get the total number and the mean of these quantities in liters.
5. Print to the screen all the quantities calculated.

In [15]: week_shots = numpy.array([2,3,2,5,10,12,1]) * ureg.shot

total_shots = numpy.sum(week_shots)

mean_shots = numpy.mean(week_shots)

Converting in liters - LIST VERSION

days = len(week_shots)

week_liters = []

for day in range(days):

week_liters.append(week_shots[day].to(ureg.liter))

total_liters = sum(week_liters)

mean_liters = total_liters / float(days)

Converting in liters - NUMPY VERSION

days = len(week_shots)

liters_magnitude = numpy.zeros(days)

for day in range(days):

liters_magnitude[day] = week_shots[day].to(ureg.liter).magnitude

week_liters = liters_magnitude * ureg.liter

total_liters = numpy.sum(week_liters)

mean_liters = numpy.mean(week_liters)

print(’The PhD students consumed {} in a week’).format(total_shots)

print(’The PhD students consumed about {} per day’).format(mean_shots)

print(’The PhD students consumed {} of alchol in a week’).format(total_liters)

print(’The PhD students consumed about {} of alchol per day’).format(mean_liters)

The PhD students consumed 35 shot in a week

The PhD students consumed about 5.0 shot per day

The PhD students consumed 1.05 liter of alchol in a week

The PhD students consumed about 0.15 liter of alchol per day

4

1.3 Task 3 (more an example)

A really useful feature of Pint is that it can read units also as strings. Let’s pretend that a messy engineer
wrote a document “data.txt” in which there are some lengths but expressed in different units (look at the
file in the desktop).

Your task is to extract the quantities and convert all in meters and then print to the screen. Half of the
work has been already done as in this way you can focus on Pint features and their interactions with Python
instead of Python commands itself. However, if you are really confident with Python you can ignore our
suggested code and try to get the data from the .txt file on your own.

Our suggested procedure is:

1. Open the “data.txt” file from the desktop and understand its structure (hint: “data.txt” has 10
lines, you could do a for cycle for these 10 lines).

2. Then, try to extract single strings for each line of the file with the open (in read mode), readline
(here do a for cycle for the 10 lines) commands (look at this link if you don’t remember how these
commands work).

3. Then we suggest to use split command to separate the number from the unit into two separate string
variables.

4. Build a physical quantities for each line with Pint commands (be aware of the type of the variables!).
5. Store these quantities in a list with append command.
6. Convert all elements in the list with Pint commands (hint: do a for cycle for each element of the list).
7. Print the obtained quantities.

In [16]: f = open(’data.txt’, ’r’)

number_lines = 10

data = []

for line in range(number_lines):

quantity = f.readline()

quantity = quantity.split() # Splitting magnitude and unit

number = float(quantity[0]) # The magnitude is stored in the first column

unit = quantity[1] # The unit is stored in the second column

data.append(number * ureg(unit))

f.close()

In [17]: for element in range(len(data)):

print(data[element])

12.1 meter

23.3 meter

0.01 centimeter

1.03 inch

12.3 kilometer

24.0 mile

92.1 meter

12.7 millimeter

22.0 meter

33.1 centimeter

All the quantities are now stored in data list. Try to convert them all in meters and print them to the
screen.

In [18]: data_in_meters = []

for element in range(len(data)):

data_in_meters.append(data[element].to(ureg.meter))

print(data_in_meters[element])

5

https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files

12.1 meter

23.3 meter

0.0001 meter

0.026162 meter

12300.0 meter

38624.256 meter

92.1 meter

0.0127 meter

22.0 meter

0.331 meter

In [19]: print(data_in_meters[0])

12.1 meter

1.4 Task 4 (for the braves)

Pint presents also some advanced features as the Buckingham π theorem feature explained in the presen-
tation. Let’s pretend you don’t know much about physics and you have to solve a simple pendulum problem
employing only the pi theorem feature and the Pint library. The final goal is to calculate the period T of
the system showed below.

First, import pi theorem from Pint.

In [20]: from pint import pi_theorem

The Buckingham π theorem states that if you are dealing with an equation associated to a physical
system involving:

• n numbers of physical variables (as Velocity, Acceleration, Force, . . .)
• k numbers of independent fundamental quantities (as [time], [length], . . .)

Then you can express the equation in terms of:

p = n− k

p dimensionless numbers.
In the system proposed above we have:

• T (time period), M (mass), l (length) and g (acceleration) as physical quantities. Then n = 4.
• [time], [mass], [length] as independent fundamental quantities (acceleration doesn’t add any other

fundamental units as its dimensions are = [length]/[time]2). Then k = 3.

So, as p = 4 − 3 = 1 we can express our equation with one dimensionless number Π. Try to get the
number Π employing the ureg.pi theorem command as explained in the presentation.

In [21]: ureg.pi_theorem({’T’ : ’[time]’,

’M’ : ’[mass]’,

’l’ : ’[length]’,

’g’ : ’[acceleration]’}) # Or also ’[length]/[time]**2’

Out[21]: [{’T’: 2.0, ’g’: 1.0, ’l’: -1.0}]

In [22]: # So the formula is ---> Pi = T^2 * (g / l)

The result should indicates that Π can be obtained multiplyng T , g, l elevated for given powers:

Π = T x1gx2 lx3

6

From the output of the ureg.pi theorem command you should get the coefficients x1, x2 and x3. Then
you have a formula to get the period of the pendulum T as a function of Π, g and l (write down on paper
the formula).

Assuming that:

Π = 4π2

g = 9.8
m

s2

l = 0.3 m

Obtain the period of the pendulum T expressed in minutes.

In [23]: Pi = 4 * numpy.pi ** 2

g = 9.8 * (ureg.meter / ureg.second ** 2)

l = 0.3 * ureg.meter

Pi = T^2 * g / l ---> T = square_root(Pi * l / g)

T = numpy.sqrt(Pi * l / g)

T now is expressed in seconds

T.ito(ureg.minute) # Permanent conversion

print(T)

0.0183221404309 minute

7

	Computing with units exercise notebook
	Task 1
	Task 2
	Task 3 (more an example)
	Task 4 (for the braves)

