VAGRANT

Virtualisation with Vagrant

By Noorvir Aulakh
James Lambert

Thomas Rickard

Learning Outcomes

® Understand different types of virtual machines

® Be able to run, provision and stop a vagrant virtual machine.

Virtual Machine Recap

e Software implementation of a machine that executes as if it

were physical machine
® Emulates a particular computer system
® Two main types:

o System virtual machines

o Process virtual machines

System Virtual machines

A system virtual machine allows the execution of a

complete operating system

© Multiple virtual machines can co-exist on the same primary hard

drive.

® Can provide emulated hardware environments, different from

the host instruction set.

® [ess efficient that actual machine.

Process Virtual Machines

Process virtual machines are designed to run a single

program and therefore support a single process.

e Platform independent programming environment
® A common example is the Java Virtual Machine

e Another example is the .NET framework which runs on

Common Language Runtime

Virtualisation - Hypervisors

* Can use type 1 or type 2 hypervisor
* Type 1

o Runs directly on the hardware
® Type 2

o Runs on top of the operating system

Virtualisation - Raw Hardware

® Also known as native or embedded.

® Provides full virtualisation
o Multiple different systems can be run
o Runs directly on the hardware

® Some common hypervisors:

o Xen, KVM, Vmware, Virtualbox

Virtualisation - Operating System Level

* Takes place on the operating system (kernel) layer

® Slices a single server in multiple smaller partitions called

Virtual Environments (VEs)
* Has very little overhead
® [imited to same kernel

® Can run much a much higher density of VEs than fully virtual

hardware

® Docker is an example of this type of virtualisation

Vagrant

e Software for easily creating and configuring virtual

environments
® Wrapper around virtualisation software (providers)
o Virtualbox, Vmware

* Wraps around configuration management software

(provisioners)

o Ansible, Puppet, Chef, salt

Vagrant

Today we will be using Vagrant commands and

puppet for setting up or virtual environment.
Vagrant is configured using the Vagrantfile

* Stored in plain text
* Located in Vagrant current directory
* There must only be one Vagrantfile in the

Vagrant current directory.

Vagrant - why?

e Allows the set up multiple virtual machines with ease
o Highly portable
® Can use source control on setup files

® Can try a large number of various platforms quickly

User

Workflow

SSH

Virtualbox

Vagrant

Provisioners
(Puppet, chef, Ansible)

Virtual Machine

Puppet

o A configuration management tool for Unix-like and

Windows systems
° Configuration is placed in a manifest file
e Uses puppet’s declarative language

o Configuration is converted into resources and

dependencies used to install software

Puppet - why?

e Makes it casy to install and setup software in an automated

Way

® Can be included in the Vagrantfﬂe

Vagrant Cheat Sheet

Initialising

vagrant init optional box address

Running, SSH and Teardown

Boxes

vagrant add box

Add a specified box

vagrant package

Saves modified box

General

vagrant status

Vagrant machine state

vagrant up Starts VM

vagrant ssh Opens SSH connection

vagrant suspend | Saves current running
state

vagrant halt Shuts down VM

vagrant destroy | Removes all traces of

VM

vagrant global-status

State of all active
vagrant environments

Vagrant File Basics
(can be done using the command line interface)

Vagrant.configure ("2") do

|config]

config.vm.box = "hashicorp/precise32"

Adds the box

config.vm.provision :shell, path:

"bootstrap.sh"

Provisioning using shell

config.vm.network :forwarded port, host: 4567, guest: 80

Networking

end

